

Introduction to Astrophysics
Démarrer un essai gratuit de The Great Courses Signature Collection ou acheter
Disponible pour les membres Amazon Prime
Des conditions s'appliquent
Épisodes
S. 1 ÉP. 1 - Zooming Out to Distant Galaxies
29 novembre 201833 minDefine the difference between astrophysics and astronomy. Then study the vast range of scales in astrophysics - from nanometers to gigaparsecs, from individual photons to the radiation of suns. Get the big picture in a breathtaking series of exponential jumps - zooming from Earth, past the planets, stars, galaxies, and finally taking in countless clusters of galaxies.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 2 - Zooming In to Fundamental Particles
29 novembre 201832 minAfter touring the universe on a macro scale in the previous episode, now zoom in on the microcosmos - advancing by powers of ten into the realm of molecules, atoms, and nuclei. Learn why elementary particles are just as central to astrophysics as stars and galaxies. Then review the four fundamental forces of nature and perform a calculation that explains why atoms have to be the size they are.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 3 - Making Maps of the Cosmos
29 novembre 201831 minDiscover how astrophysicists map the universe. Focus on the tricky problem of calculating distances, seeing how a collection of overlapping techniques provide a "cosmic distance ladder" that works from nearby planets (by means of radar) to stars and galaxies (using parallax and Cepheid variable stars) to far distant galaxies (by observing a type of supernova with a standard intrinsic brightness).Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 4 - The Physics Demonstration in the Sky
29 novembre 201832 minIn the first of two episodes on motion in the heavens, investigate the connection between Isaac Newton's laws of motion and the earlier laws of planetary motion discovered empirically by Johannes Kepler. Find that Kepler's third law is the ideal method for measuring the mass of practically any phenomenon in astrophysics. Also, study the mathematics behind Kepler's second law.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 5 - Newton's Hardest Problem
29 novembre 201835 minContinue your exploration of motion by discovering the law of gravity just as Newton might have - by analyzing Kepler's laws with the aid of calculus (which Newton invented for the purpose). Look at a graphical method for understanding orbits, and consider the conservation laws of angular momentum and energy in light of Emmy Noether's theory that links conservation laws and symmetry.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 6 - Tidal Forces
29 novembre 201832 minWhy are the rings around Saturn and the much fainter rings around Jupiter, Uranus, and Neptune at roughly the same relative distances from the planet? Why are large moons spherical? And why are large moons only found in wide orbits? These problems lead to an analysis of tidal forces and the Roche limit. Close by calculating the density of the Sun based on Earth's ocean tides.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 7 - Black Holes
29 novembre 201832 minUse your analytical skill and knowledge of gravity to probe the strange properties of black holes. Learn to calculate the Schwarzschild radius (also known as the event horizon), which is the boundary beyond which no light can escape. Determine the size of the giant black hole at the center of our galaxy and learn about an effort to image its event horizon with a network of radio telescopes.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 8 - Photons and Particles
29 novembre 201834 minInvestigate our prime source of information about the universe: electromagnetic waves, which consist of photons from gamma ray to radio wavelengths. Discover that a dense collection of photons is comparable to a gas obeying the ideal gas law. This law, together with the Stefan-Boltzmann law, Wien's law, and Kepler's third law, help you make sense of the cosmos as the course proceeds.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 9 - Comparative Planetology
29 novembre 201832 minSurvey representative planets in our solar system with an astrophysicist's eyes, asking what makes Mercury, Venus, Earth, and Jupiter so different. Why doesn't Mercury have an atmosphere? Why is Venus so much hotter than Earth? Why is Jupiter so huge? Analyze these and other riddles with the help of physical principles such as the Stefan-Boltzmann law.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 10 - Optical Telescopes
29 novembre 201832 minConsider the problem of gleaning information from the severely limited number of optical photons originating from astronomical sources. Our eyes can only do it so well, and telescopes have several major advantages: increased light-gathering power, greater sensitivity of telescopic cameras and sensors such as charge-coupled devices (CCDs), and enhanced angular and spectral resolution.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 11 - Radio and X-Ray Telescopes
29 novembre 201833 minNon-visible wavelengths compose by far the largest part of the electromagnetic spectrum. Even so, many astronomers assumed there was nothing to see in these bands. The invention of radio and X-ray telescopes proved them spectacularly wrong. Examine the challenges of detecting and focusing radio and X-ray light, and the dazzling astronomical phenomena that radiate in these wavelengths.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 12 - The Message in a Spectrum
29 novembre 201832 minStarting with the spectrum of sunlight, notice that thin, dark lines are present at certain wavelengths. These lines reveal the composition and temperature of the Sun's outer atmosphere, and similar lines characterize other stars. More diffuse phenomena such as nebulae produce bright emission lines against a dark spectrum. Probe the quantum and thermodynamic events implied by these clues.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 13 - The Properties of Stars
29 novembre 201834 minTake stock of the wide range of stellar luminosities, temperatures, masses, and radii using spectra and other data. In the process, construct the celebrated Hertzsprung-Russell diagram, with its main sequence of stars in the prime of life, including the Sun. Note that two out of three stars have companions. Investigate the orbital dynamics of these binary systems.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 14 - Planets around Other Stars
29 novembre 201833 minEmbark on Professor Winn's specialty: extrasolar planets, also known as exoplanets. Calculate the extreme difficulty of observing an Earth-like planet orbiting a Sun-like star in our stellar neighborhood. Then look at the clever techniques that can now overcome this obstacle. Review the surprising characteristics of many exoplanets and focus on five that are especially noteworthy.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 15 - Why Stars Shine
29 novembre 201834 minGet a crash course in nuclear physics as you explore what makes stars shine. Zero in on the Sun, working out the mass it has consumed through nuclear fusion during its 4.5-billion-year history. While it's natural to picture the Sun as a giant furnace of nuclear bombs going off non-stop, calculations show it's more like a collection of toasters; the Sun is luminous simply because it's so big.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 16 - Simple Stellar Models
29 novembre 201834 minLearn how stars work by delving into stellar structure, using the Sun as a model. Relying on several physical principles and sticking to order-of-magnitude calculations, determine the pressure and temperature at the center of the Sun, and the time it takes for energy generated in the interior to reach the surface, which amounts to thousands of years. Apply your conclusions to other stars.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 17 - White Dwarfs
29 novembre 201834 minDiscover the fate of solar mass stars after they exhaust their nuclear fuel. The galaxies are teeming with these dim "white dwarfs" that pack the mass of the Sun into a sphere roughly the size of Earth. Venture into quantum theory to understand what keeps these exotic stars from collapsing into black holes, and learn about the Chandrasekhar limit, which determines a white dwarf's maximum mass.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 18 - When Stars Grow Old
29 novembre 201833 minTrace stellar evolution from two points of view. First, dive into a protostar and witness events unfold as the star begins to contract and fuse hydrogen. Exhausting that, it fuses heavier elements and eventually collapses into a white dwarf - or something even denser. Next, view this story from the outside, seeing how stellar evolution looks to observers studying stars with telescopes.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 19 - Supernovas and Neutron Stars
29 novembre 201833 minLook inside a star that weighs several solar masses to chart its demise after fusing all possible nuclear fuel. Such stars end in a gigantic explosion called a supernova, blowing off outer material and producing a super-compact neutron star, a billion times denser than a white dwarf. Study the rapid spin of neutron stars and the energy they send beaming across the cosmos.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 20 - Gravitational Waves
29 novembre 201832 minInvestigate the physics of gravitational waves, a phenomenon predicted by Einstein and long thought to be undetectable. It took colliding black holes to generate gravitational waves that could be picked up by an experiment called LIGO on Earth, a billion light years away. This remarkable achievement won LIGO scientists the 2017 Nobel Prize in Physics.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 21 - The Milky Way and Other Galaxies
29 novembre 201832 minTake in our entire galaxy, called the Milky Way. Locate Earth's position; then survey other galaxies, classifying their structure. Use the virial theorem to analyze a typical galaxy, which can be thought of as a "collisionless gas" of stars. Note that galaxies themselves often collide with each other, as the nearby Andromeda Galaxy is destined to do with the Milky Way billions of years from now.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 22 - Dark Matter
29 novembre 201831 minBegin with active galaxies that have supermassive black holes gobbling up nearby stars. Then consider clusters of galaxies and the clues they give for missing mass - dubbed "dark matter." Chart the distribution of dark matter around galaxies and speculate what it might be. Close with the Big Bang, deduced from evidence that most galaxies are speeding away from us; the farther away, the faster.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 23 - The First Atoms and the First Nuclei
29 novembre 201834 minThe Big Bang theory is one pillar of modern cosmology. Another is the cosmic microwave background radiation, which is the faint "echo" of the Big Bang, permeating all of space and discovered in 1965. The third pillar is the cosmic abundances of the lightest elements, which tell the story of the earliest moment of nucleosynthesis taking place in the first few minutes of the Big Bang.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheterS. 1 ÉP. 24 - The History of the Universe
29 novembre 201837 minIn this last episode, follow the trail of the greatest unsolved problem in astrophysics. Along the way, get a grip on the past, present, and future of the universe. Discovered in the 1990s, the problem is "dark energy," which is causing the expansion of the universe to accelerate. Trace this mysterious force to the lambda term in the celebrated Friedmann equation, proposed in the 1920s.Démarrer un essai gratuit de The Great Courses Signature Collection ou acheter