Geometry: An Interactive Journey to Mastery
the great courses signature collection

Geometry: An Interactive Journey to Mastery

シーズン1
Like other math fields, geometry teaches us how to think. It leads students to uncover new truths based on already established ideas and facts. In short, geometry is among the great intellectual feats of humankind. Build an understanding of geometry from the ground up with these 36 lectures.
201436 エピソード7+
The Great Courses Signature Collectionの無料体験または購入

利用規約が適用されます

エピソード

  1. シーズン1エピソード1 - Geometry - Ancient Ropes and Modern Phones

    2014年5月1日
    33分
    TV-PG
    Explore the origins of one of the oldest branches of mathematics. See how geometry not only deals with practical concerns such as mapping, navigation, architecture, and engineering, but also offers an intellectual journey in its own right - inviting big, deep questions. #Science & Mathematics
    The Great Courses Signature Collectionの無料体験または購入
  2. シーズン1エピソード2 - Beginnings - Jargon and Undefined Terms

    2014年5月1日
    28分
    TV-PG
    Lay the basic building blocks of geometry by examining what we mean by the terms point, line, angle, plane, straight, and flat. Then learn the postulates or axioms for how those building blocks interact. Finally, work through your first proof - the vertical angle theorem.
    The Great Courses Signature Collectionの無料体験または購入
  3. シーズン1エピソード3 - Angles and Pencil-Turning Mysteries

    2014年5月1日
    28分
    TV-PG
    Using nothing more than an ordinary pencil, see how three angles in a triangle can add up to 180 degrees. Then compare how the experience of turning a pencil on a flat triangle differs from walking in a triangular shape on the surface of a sphere. With this exercise, Professor Tanton introduces you to the difference between flat and spherical geometry.
    The Great Courses Signature Collectionの無料体験または購入
  4. シーズン1エピソード4 - Understanding Polygons

    2014年5月1日
    31分
    TV-PG
    Shapes with straight lines (called polygons) are all around you, from the pattern on your bathroom floor to the structure of everyday objects. But although we may have an intuitive understanding of what these shapes are, how do we define them mathematically? What are their properties? Find out the answers to these questions and more.
    The Great Courses Signature Collectionの無料体験または購入
  5. シーズン1エピソード5 - The Pythagorean Theorem

    2014年5月1日
    29分
    TV-PG
    We commonly define the Pythagorean theorem using the formula a2 + b2 = c2. But Pythagoras himself would have been confused by that. Explore how this famous theorem can be explained using common geometric shapes (no fancy algebra required), and how it's a critical foundation for the rest of geometry.
    The Great Courses Signature Collectionの無料体験または購入
  6. シーズン1エピソード6 - Distance, Midpoints, and Folding Ties

    2014年5月1日
    29分
    TV-PG
    Learn how watching a fly on his ceiling inspired the mathematician René Descartes to link geometry and algebra. Find out how this powerful connection allows us to use algebra to calculate distances, midpoints, and more.
    The Great Courses Signature Collectionの無料体験または購入
  7. シーズン1エピソード7 - The Nature of Parallelism

    2014年5月1日
    35分
    TV-PG
    Examine how our usual definition of parallelism is impossible to check. Use the fundamental assumptions from the previous lectures to follow in Euclid's footsteps and create an alternative way of checking if lines are parallel. See how, using this result, it's possible to compute the circumference of the Earth just by using shadows!
    The Great Courses Signature Collectionの無料体験または購入
  8. シーズン1エピソード8 - Proofs and Proof Writing

    2014年5月1日
    29分
    TV-PG
    The beauty of geometry is that each result logically builds on the others. Mathematicians demonstrate this chain of deduction using proofs. Learn this step-by-step process of logic and see how to construct your own proofs.
    The Great Courses Signature Collectionの無料体験または購入
  9. シーズン1エピソード9 - Similarity and Congruence

    2014年5月1日
    34分
    TV-PG
    Define what it means for polygons to be "similar" or "congruent" by thinking about photocopies. Then use that to prove the third key assumption of geometry - the side-angle-side postulate - which lets you verify when triangles are similar. Thales of Ionia used this principle in 600 B.C.E. to impress the Egyptians by calculating the height of the pyramids.
    The Great Courses Signature Collectionの無料体験または購入
  10. シーズン1エピソード10 - Practical Applications of Similarity

    2014年5月1日
    31分
    TV-PG
    Build on the side-angle-side postulate and derive other ways of testing whether triangles are similar or congruent. Also dive into several practical applications, including a trick botanists use for estimating the heights of trees and a way to measure the width of a river using only a baseball cap.
    The Great Courses Signature Collectionの無料体験または購入
  11. シーズン1エピソード11 - Making Use of Linear Equations

    2014年5月1日
    29分
    TV-PG
    Delve deeper into the connections between algebra and geometry by looking at lines and their equations. Use the three basic assumptions from previous lectures to prove that parallel lines have the same slope and to calculate the shortest distance between a point and a line.
    The Great Courses Signature Collectionの無料体験または購入
  12. シーズン1エピソード12 - Equidistance - A Focus on Distance

    2014年5月1日
    33分
    TV-PG
    You've learned how to find the midpoint between two points. But what if you have three points? Or four points? Explore the concept of equidistance and how it reveals even more about the properties of triangles and other shapes.
    The Great Courses Signature Collectionの無料体験または購入
  13. シーズン1エピソード13 - A Return to Parallelism

    2014年5月1日
    31分
    TV-PG
    Continue your study of parallelism by exploring the properties of transversals (lines that intersect two other lines). Prove how corresponding angles are congruent, and see how this fact ties into a particular type of polygon: trapezoids.
    The Great Courses Signature Collectionの無料体験または購入
  14. シーズン1エピソード14 - Exploring Special Quadrilaterals

    2014年5月1日
    30分
    TV-PG
    Classify all different types of four-sided polygons (called quadrilaterals) and learn the surprising characteristics about the diagonals and interior angles of rectangles, rhombuses, trapezoids, and more. Also see how real-life objects - like ironing boards - exhibit these geometric characteristics.
    The Great Courses Signature Collectionの無料体験または購入
  15. シーズン1エピソード15 - The Classification of Triangles

    2014年5月1日
    30分
    TV-PG
    Continue the work of classification with triangles. Find out what mathematicians mean when they use words like scalene, isosceles, equilateral, acute, right, and obtuse. Then, learn how to use the Pythagorean theorem to determine the type of triangle (even if you don't know the measurements of the angles).
    The Great Courses Signature Collectionの無料体験または購入
  16. シーズン1エピソード16 - Circle-ometry - On Circular Motion

    2014年5月1日
    32分
    TV-PG
    How can you figure out the "height" of the sun in the sky without being able to measure it directly with a ruler? Follow the path of ancient Indian scholars to answer this question using "angle of elevation" and a branch of geometry called trigonometry. You learn the basic trig identities (sine, cosine, and tangent) and how physicists use them to describe circular motion.
    The Great Courses Signature Collectionの無料体験または購入
  17. シーズン1エピソード17 - Trigonometry through Right Triangles

    2014年5月1日
    28分
    TV-PG
    The trig identities you explored in the last lecture go beyond circles. Learn how to define all of them just using triangles (expressed in the famous acronym SOHCAHTOA). Then, uncover how trigonometry is practically applied by architects and engineers to measure the heights of buildings.
    The Great Courses Signature Collectionの無料体験または購入
  18. シーズン1エピソード18 - What Is the Sine of 1°?

    2014年5月1日
    32分
    TV-PG
    So far, you've seen how to calculate the sine, cosine, and tangents of basic angles (0°, 30°, 45°, 60°, and 90°). What about calculating them for other angles - without a calculator? You'll use the Pythagorean theorem to come up with formulas for sums and differences of the trig identities, which then allow you to calculate them for other angles.
    The Great Courses Signature Collectionの無料体験または購入
  19. シーズン1エピソード19 - The Geometry of a Circle

    2014年5月1日
    29分
    TV-PG
    Explore the world of circles! Learn the definition of a circle as well as what mathematicians mean when they say things like radius, chord, diameter, secant, tangent, and arc. See how these interact, and use that knowledge to prove the inscribed angle theorem and Thales' theorem.
    The Great Courses Signature Collectionの無料体験または購入
  20. シーズン1エピソード20 - The Equation of a Circle

    2014年5月1日
    33分
    TV-PG
    In your study of lines, you used the combination of geometry and algebra to determine all kinds of interesting properties and characteristics. Now, you'll do the same for circles, including deriving the algebraic equation for a circle.
    The Great Courses Signature Collectionの無料体験または購入
  21. シーズン1エピソード21 - Understanding Area

    2014年5月1日
    28分
    TV-PG
    What do we mean when we say "area"? Explore how its definition isn't quite so straightforward. Then, work out the formula for the area of a triangle and see how to use that formula to derive the area of any other polygon.
    The Great Courses Signature Collectionの無料体験または購入
  22. シーズン1エピソード22 - Explorations with Pi

    2014年5月1日
    31分
    TV-PG
    We say that pi is 3.14159 ... but what is pi really? Why does it matter? And what does it have to do with the area of a circle? Explore the answer to these questions and more - including how to define pi for shapes other than circles (such as squares).
    The Great Courses Signature Collectionの無料体験または購入
  23. シーズン1エピソード23 - Three-Dimensional Geometry - Solids

    2014年5月1日
    32分
    TV-PG
    So far, you've figured out all kinds of fun properties with two-dimensional shapes. But what if you go up to three dimensions? In this lecture, you classify common 3-D shapes such as cones and cylinders, and learn some surprising definitions. Finally, you study the properties (like volume) of these shapes.
    The Great Courses Signature Collectionの無料体験または購入
  24. シーズン1エピソード24 - Introduction to Scale

    2014年5月1日
    30分
    TV-PG
    If you double the side-lengths of a shape, what happens to its area? If the shape is three-dimensional, what happens to its volume? In this lecture, you explore the concept of scale. You use this idea to re-derive one of our fundamental assumptions of geometry, the Pythagorean theorem, using the areas of any shape drawn on the edges of the right triangle - not just squares.
    The Great Courses Signature Collectionの無料体験または購入
  25. シーズン1エピソード25 - Playing with Geometric Probability

    2014年5月1日
    30分
    TV-PG
    Unite geometry with the world of probability theory. See how connecting these seemingly unrelated fields offers new ways of solving questions of probability - including figuring out the likelihood of having a short wait for the bus at the bus stop.
    The Great Courses Signature Collectionの無料体験または購入