Introduction to Machine Learning
the great courses living

Introduction to Machine Learning

시즌 1
This series teaches you about machine-learning programs and how to write them in the Python programming language. For those new to Python, a “get-started” tutorial is included. Professor Michael L. Littman covers major concepts and techniques, all illustrated with real-world examples such as medical diagnosis, game-playing, spam filters, and media special effects.
202025 에피소드TV-PG
The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기

약관이 적용됩니다.

에피소드

  1. 시즌 1 에피소드 1 - Telling the Computer What We Want

    2020년 11월 5일
    31분
    전체
    Professor Littman gives a bird’s-eye view of machine learning, covering its history, key concepts, terms, and techniques as a preview for the rest of the series. Look at a simple example involving medical diagnosis. Then, focus on a machine-learning program for a video green screen, used widely in television and film. Contrast this with a traditional program to solve the same problem.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  2. 시즌 1 에피소드 2 - Starting with Python Notebooks and Colab

    2020년 11월 5일
    17분
    7+
    The demonstrations in this series use the Python programming language, the most popular and widely supported language in machine learning. Dr. Littman shows you how to run programming examples from your web browser, which avoids the need to install the software on your own computer, saving installation headaches and giving you more processing power than is available on a typical home computer.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  3. 시즌 1 에피소드 3 - Decision Trees for Logical Rules

    2020년 11월 5일
    31분
    7+
    Can machine learning beat a rhyming rule, taught in elementary school, for determining whether a word is spelled with an I-E or an E-I—as in “diet” and “weigh”? Discover that a decision tree is a convenient tool for approaching this problem. After experimenting, use Python to build a decision tree for predicting the likelihood for an individual to develop diabetes based on eight health factors.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  4. 시즌 1 에피소드 4 - Neural Networks for Perceptual Rules

    2020년 11월 5일
    30분
    7+
    Graduate to a more difficult class of problems: learning from images and auditory information. Here, it makes sense to address the task more or less the way the brain does, using a form of computation called a neural network. Explore the general characteristics of this powerful tool. Among the examples, compare decision-tree and neural-network approaches to recognizing handwritten digits.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  5. 시즌 1 에피소드 5 - Opening the Black Box of a Neural Network

    2020년 11월 5일
    29분
    7+
    Take a deeper dive into neural networks by working through a simple algorithm implemented in Python. Return to the green-screen problem from the first episode to build a learning algorithm that places the professor against a new backdrop.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  6. 시즌 1 에피소드 6 - Bayesian Models for Probability Prediction

    2020년 11월 5일
    29분
    7+
    A program need not understand the content of an email to know with high probability that it’s spam. Discover how machine learning does so with the Naive Bayes approach, which is a simplified application of Bayes’ theorem to a simplified model of language generation. The technique illustrates a very useful strategy: going backward from effects (in this case, words) to their causes (spam).
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  7. 시즌 1 에피소드 7 - Genetic Algorithms for Evolved Rules

    2020년 11월 5일
    28분
    7+
    When you encounter a new type of problem and don’t yet know the best machine learning strategy to solve it, a ready first approach is a genetic algorithm. These programs apply the principles of evolution to artificial intelligence, employing natural selection over many generations to optimize your results. Analyze several examples, including finding where to aim.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  8. 시즌 1 에피소드 8 - Nearest Neighbors for Using Similarity

    2020년 11월 5일
    29분
    7+
    Simple to use and speedy to execute, the nearest neighbor algorithm works on the principle that adjacent elements in a dataset are likely to share similar characteristics. Try out this strategy for determining a comfortable combination of temperature and humidity in a house. Then, dive into the problem of malware detection, seeing how the nearest neighbor rule can sort good software from bad.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  9. 시즌 1 에피소드 9 - The Fundamental Pitfall of Overfitting

    2020년 11월 5일
    28분
    7+
    Having covered the five fundamental classes of machine learning in the previous episodes, now focus on a risk common to all: overfitting. This is the tendency to model training data too well, which can harm the performance on the test data. Practice avoiding this problem using the diabetes dataset from episode 3. Hear tips on telling the difference between real signals and spurious associations.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  10. 시즌 1 에피소드 10 - Pitfalls in Applying Machine Learning

    2020년 11월 5일
    28분
    7+
    Explore pitfalls that loom when applying machine learning algorithms to real-life problems. For example, see how survival statistics from a boating disaster can lead to false conclusions. Also, look at cases from medical care and law enforcement that reveal hidden biases in the way data is interpreted. Since an algorithm is doing the interpreting, understanding what's happening can be a challenge.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  11. 시즌 1 에피소드 11 - Clustering and Semi-Supervised Learning

    2020년 11월 5일
    27분
    7+
    See how a combination of labeled and unlabeled examples can be exploited in machine learning, specifically by using clustering to learn about the data before making use of the labeled examples.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  12. 시즌 1 에피소드 12 - Recommendations with Three Types of Learning

    2020년 11월 5일
    30분
    7+
    Recommender systems are ubiquitous, from book and movie tips to work aids for professionals. But how do they function? Look at three different approaches to this problem, focusing on Professor Littman’s dilemma as an expert reviewer for conference paper submissions, numbering in the thousands. Also, probe Netflix’s celebrated one-million-dollar prize for an improved recommender algorithm.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  13. 시즌 1 에피소드 13 - Games with Reinforcement Learning

    2020년 11월 5일
    30분
    7+
    In 1959, computer pioneer Arthur Samuel popularized the term “machine learning” for his checkers-playing program. Delve into strategies for the board game Othello as you investigate today’s sophisticated algorithms for improving play, at least for the machine. Also explore game-playing tactics for chess, Jeopardy!, poker, and Go, which have been a hotbed for machine-learning research.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  14. 시즌 1 에피소드 14 - Deep Learning for Computer Vision

    2020년 11월 5일
    27분
    7+
    Discover how the ImageNet challenge helped revive the field of neural networks through a technique called deep learning, which is ideal for tasks such as computer vision. Consider the problem of image recognition and the steps deep learning takes to solve it. Dr. Littman throws out his own challenge: Train a computer to distinguish foot files from cheese graters.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  15. 시즌 1 에피소드 15 - Getting a Deep Learner Back on Track

    2020년 11월 5일
    30분
    7+
    Roll up your sleeves and debug a deep-learning program. The software is a neural net classifier designed to separate pictures of animals and bugs. In this case, fix the bugs in the code to find the bugs in the images! Professor Littman walks you through diagnostic steps relating to the representational space, the loss function, and the optimizer.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  16. 시즌 1 에피소드 16 - Text Categorization with Words as Vectors

    2020년 11월 5일
    30분
    전체
    Previously, you saw how machine learning is used in spam filtering. Dig deeper into problems of language processing, such as how a computer guesses the word you are typing and possibly even badly misspelling. Focus on the concept of word embeddings, which “define” the meanings of words using vectors in high-dimensional space, a method that involves techniques from linear algebra.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  17. 시즌 1 에피소드 17 - Deep Networks That Output Language

    2020년 11월 5일
    29분
    7+
    Continue your study of machine learning and language by seeing how computers not only read text, but how they can also generate it. Explore the current state of machine translation, which rivals the skill of human translators. Also, learn how algorithms handle a game that Professor Littman played with his family, where a given phrase is expanded piecemeal to create a story.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  18. 시즌 1 에피소드 18 - Making Stylistic Images with Deep Networks

    2020년 11월 5일
    29분
    7+
    One way to think about the creative process is as a two-stage operation, involving an idea generator and a discriminator. Study two approaches to image generation using machine learning. In the first, a target image of a pig serves as the discriminator. In the second, the discriminator is programmed to recognize the general characteristics of a pig, which is more how people recognize objects.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  19. 시즌 1 에피소드 19 - Making Photorealistic Images with GANs

    2020년 11월 5일
    30분
    7+
    A new approach to image generation and discrimination pits both processes against each other in a “generative adversarial network,” or GAN. The technique can produce a new image based on a reference class, for example making a person look older or younger, or automatically filling in a landscape after a building has been removed. GANs have great potential for creativity and, unfortunately, fraud.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  20. 시즌 1 에피소드 20 - Deep Learning for Speech Recognition

    2020년 11월 5일
    30분
    7+
    Consider the problem of speech recognition and the quest, starting in the 1950s, to program computers for this task. Then, delve into algorithms that machine learning uses to create today’s sophisticated speech recognition systems. Get a taste of the technology by training with deep-learning software for recognizing simple words. Finally, look ahead to the prospect of conversing computers.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  21. 시즌 1 에피소드 21 - Inverse Reinforcement Learning from People

    2020년 11월 5일
    29분
    7+
    Are you no good at programming? Machine learning can a give a demonstration, predict what you want, and suggest improvements. For example, inverse reinforcement turns the tables on the following logical relation, “if you are a horse and like carrots, go to the carrot.” Inverse reinforcement looks at it like this: “if you see a horse go to the carrot, it might be because the horse likes carrots.”
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  22. 시즌 1 에피소드 22 - Causal Inference Comes to Machine Learning

    2020년 11월 5일
    30분
    7+
    Get acquainted with a powerful new tool in machine learning, causal inference, which addresses a key limitation of classical methods: the focus on correlation to the exclusion of causation. Practice with a historic problem of causation: the link between cigarette smoking and cancer, which will always be obscured by confounding factors. Also look at other cases of correlation versus causation.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  23. 시즌 1 에피소드 23 - The Unexpected Power of Over-Parameterization

    2020년 11월 5일
    30분
    7+
    Probe the deep-learning revolution that took place around 2015, conquering worries about overfitting data due to the use of too many parameters. Dr. Littman sets the stage by taking you back to his undergraduate psychology class, taught by one of The Great Courses’ original professors. Chart the breakthrough that paved the way for deep networks that can tackle hard, real-world learning problems.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  24. 시즌 1 에피소드 24 - Protecting Privacy within Machine Learning

    2020년 11월 5일
    31분
    7+
    Machine learning is both a cause and a cure for privacy concerns. Hear about two notorious cases where de-identified data was unmasked. Then, step into the role of a computer security analyst, evaluating different threats, including pattern recognition and compromised medical records. Discover how to think like a digital snoop and evaluate different strategies for thwarting an attack.
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기
  25. 시즌 1 에피소드 25 - Mastering the Machine Learning Process

    2020년 11월 5일
    34분
    7+
    Finish the series with a lightning tour of meta-learning: algorithms that learn how to learn, making it possible to solve problems that are otherwise unmanageable. Examine two approaches: one that reasons about discrete problems using satisfiability solvers and another that allows programmers to optimize continuous models. Close with a glimpse of the future for this astounding
    The Great Courses Living 또는 The Great Courses Signature Collection & Living 구독 또는 구매하기