Python Machine Learning Projects

Python Machine Learning Projects

Kausi 1
Machine learning gives you unimaginably powerful insights into data. This course is a unique blend of projects that teach you what Machine Learning is all about and how you can implement machine learning concepts in practice. Six different independent projects will help you master machine learning in Python. You will be able to implement your own machine learning models after taking this course.
201626 jaksoaKAIKKI
Ostettavissa

Jaksot

  1. K 1 J 1The Course Overview

    27. joulukuuta 2016
    3 min
    KAIKKI
    This video gives an overview of the entire course.
    Ostettavissa
  2. K 1 J 2Sourcing Airfare Pricing Data

    27. joulukuuta 2016
    4 min
    KAIKKI
    We need the air pricing data from a website to work with. You will learn to do that in this section.
    Ostettavissa
  3. K 1 J 3Retrieving the Fare Data with Advanced Web Scraping Techniques

    27. joulukuuta 2016
    5 min
    KAIKKI
    After determining the source of the data, we need to retrieve the data.
    Ostettavissa
  4. K 1 J 4Parsing the DOM to Extract Pricing Data

    27. joulukuuta 2016
    16 min
    KAIKKI
    DOM is the structure of elements that form the web page. We need to get some details of the structure by parsing it.
    Ostettavissa
  5. K 1 J 5Sending Real-Time Alerts Using IFTTT

    27. joulukuuta 2016
    4 min
    KAIKKI
    To get real-time alerts when a particular event occurs, we need to use IFTTT.
    Ostettavissa
  6. K 1 J 6Putting It All Together

    27. joulukuuta 2016
    3 min
    KAIKKI
    To deploy our app, we'll move on to working in a text editor. You will put together the entire code to get the final result.
    Ostettavissa
  7. K 1 J 7The IPO Market

    27. joulukuuta 2016
    13 min
    KAIKKI
    Before deciding strategies for the IPO market, we need to study the IPO market and derive inferences from it.
    Ostettavissa
  8. K 1 J 8Feature Engineering

    27. joulukuuta 2016
    8 min
    KAIKKI
    The consideration and inclusion of all factors affecting the market is called feature engineering. Modeling this is as important as the data used in building the model.
    Ostettavissa
  9. K 1 J 9Binary Classification

    27. joulukuuta 2016
    6 min
    KAIKKI
    Instead of giving the value of the return, you can predict the IPO for a trade you will buy or not buy. The model used is logistic regression.
    Ostettavissa
  10. K 1 J 10Feature Importance

    27. joulukuuta 2016
    5 min
    KAIKKI
    It is important to know which features will make the offering successful. You can find that out in this section.
    Ostettavissa
  11. K 1 J 11Creating a Supervised Training Set with the Pocket App

    27. joulukuuta 2016
    9 min
    KAIKKI
    To create a model, we have to first have a training dataset. We will use the pocket app for this.
    Ostettavissa
  12. K 1 J 12Using the embed.ly API to Download Story Bodies

    27. joulukuuta 2016
    3 min
    KAIKKI
    You can't move forward with just the URLs of the stories. You would need the full article. So let's check out how to do that in this video.
    Ostettavissa
  13. K 1 J 13Natural Language Processing Basics

    27. joulukuuta 2016
    7 min
    KAIKKI
    Machine learning models work on numerical data. So we will need to transform our text into numerical data using NLP.
    Ostettavissa
  14. K 1 J 14Support Vector Machines

    27. joulukuuta 2016
    4 min
    KAIKKI
    You will learn about the linear support vector machine in this video. The SVM algorithm separates data points linearly into classes.
    Ostettavissa
  15. K 1 J 15IFTTT Integration with Feeds, Google Sheets, and E-mail

    27. joulukuuta 2016
    8 min
    KAIKKI
    We have provided a training dataset. But we also need a stream of articles as a testing dataset to run our model against.
    Ostettavissa
  16. K 1 J 16Setting Up Your Daily Personal Newsletter

    27. joulukuuta 2016
    4 min
    KAIKKI
    It would make life easier if you get a personalized e-mail of your stories, right? So you will learn how to do that in this video.
    Ostettavissa
  17. K 1 J 17What Does Research Tell Us about the Stock Market?

    27. joulukuuta 2016
    6 min
    KAIKKI
    Research is the most important thing before we start working on designing a strategy.
    Ostettavissa
  18. K 1 J 18Developing a Trading Strategy

    27. joulukuuta 2016
    12 min
    KAIKKI
    Once you have studied the various aspects of the market, it is time to develop a trading strategy. You will learn it in this video.
    Ostettavissa
  19. K 1 J 19Building a Model and Evaluating Its Performance

    27. joulukuuta 2016
    7 min
    KAIKKI
    Now that we have our baseline, we will build our first regression model for prediction of stocks.
    Ostettavissa
  20. K 1 J 20Modeling with Dynamic Time Warping

    27. joulukuuta 2016
    6 min
    KAIKKI
    Another algorithm to work with is dynamic time warping. It provides us a metric which will inform us about the similarity between two time series.
    Ostettavissa
  21. K 1 J 21Machine Learning on Images

    27. joulukuuta 2016
    5 min
    KAIKKI
    It is very important to understand machine learning's concepts before working with it.
    Ostettavissa
  22. K 1 J 22Working with Images

    27. joulukuuta 2016
    4 min
    KAIKKI
    In order to work with images, we need to transform them into a matrix form, that is, numerical form.
    Ostettavissa
  23. K 1 J 23Finding Similar Images

    27. joulukuuta 2016
    8 min
    KAIKKI
    We will use algorithms to find similar images in the database.
    Ostettavissa
  24. K 1 J 24Building an Image Similarity Engine

    27. joulukuuta 2016
    10 min
    KAIKKI
    We will combine what we have studied so far to build an image similarity engine.
    Ostettavissa
  25. K 1 J 25The Design of Chatbots

    27. joulukuuta 2016
    7 min
    KAIKKI
    Design of chatbots consists of parameters like mode of communication, the content, and so on. You will look at that in this video.
    Ostettavissa