Math for Machine Learning

Math for Machine Learning

Sesong 1
Learn the core topics of Machine Learning to open doors to data science and artificial intelligence. If you're looking to gain a solid foundation in Machine Learning, allowing you to study on your own schedule at a fraction of the cost it would take at a traditional university, to further your career goals, this online course is for you. Practice problems available at onlinemathtraining.
201872 episoderALLE
Tilgjengelig for kjøp

Episoder

  1. S1 E1 - Introduction Lecture (1 of 72 Lectures)

    2. mai 2018
    3min
    ALLE
    An introduction to the course is provided. Practice problems available at onlinemathtraining.
    Tilgjengelig for kjøp
  2. S1 E2 - Section 1: Linear Regression (First Lecture: Linear Regression)

    2. mai 2018
    8min
    ALLE
    Students will learn about the notion of residual sum of squares. Practice problems available at onlinemathtraining.
    Tilgjengelig for kjøp
  3. S1 E3 - The Least Squares Method

    2. mai 2018
    11min
    ALLE
    Students will learn how to apply the least squares method to solve the least squares problem.
    Tilgjengelig for kjøp
  4. S1 E4 - Linear Algebra Solution to Least Squares Problem

    2. mai 2018
    13min
    ALLE
    Students will learn about a linear algebra approach to solving the least squares problem.
    Tilgjengelig for kjøp
  5. S1 E5 - Example: Linear Regression

    2. mai 2018
    4min
    ALLE
    An example of applying the least squares method is provided.
    Tilgjengelig for kjøp
  6. S1 E6 - Summary: Linear Regression

    2. mai 2018
    34sek
    ALLE
    A summary of linear regression is provided.
    Tilgjengelig for kjøp
  7. S1 E7 - Section 2: Linear Discriminant Analysis (First Lecture: Classification)

    2. mai 2018
    1min
    ALLE
    Students will be introduced to classification problems. Practice problems available at onlinemathtraining.
    Tilgjengelig for kjøp
  8. S1 E8 - Linear Discriminant Analysis

    2. mai 2018
    44sek
    ALLE
    The method of linear discriminant analysis is introduced.
    Tilgjengelig for kjøp
  9. S1 E9 - The Posterior Probability Functions

    2. mai 2018
    4min
    ALLE
    In this lecture, we build a formula for the posterior probability.
    Tilgjengelig for kjøp
  10. S1 E10 - Modelling the Posterior Probability Functions

    2. mai 2018
    7min
    ALLE
    In this lecture, we model the posterior probability functions.
    Tilgjengelig for kjøp
  11. S1 E11 - Linear Discriminant Functions

    2. mai 2018
    6min
    ALLE
    Students will learn what linear discriminant functions are.
    Tilgjengelig for kjøp
  12. S1 E12 - Estimating the Linear Discriminant Functions

    2. mai 2018
    6min
    ALLE
    In this lecture, we estimate the linear discriminant functions.
    Tilgjengelig for kjøp
  13. S1 E13 - Classifying Data Points Using Linear Discriminant Functions

    2. mai 2018
    3min
    ALLE
    Students will learn how to classify data points using linear discriminant functions.
    Tilgjengelig for kjøp
  14. S1 E14 - LDA Example 1

    2. mai 2018
    14min
    ALLE
    Students will see an example of applying linear discriminant analysis.
    Tilgjengelig for kjøp
  15. S1 E15 - LDA Example 2

    2. mai 2018
    18min
    ALLE
    Another example of applying linear discriminant analysis is provided.
    Tilgjengelig for kjøp
  16. S1 E16 - Summary: Linear Discriminant Analysis

    2. mai 2018
    2min
    ALLE
    A summary of linear discriminant analysis is provided.
    Tilgjengelig for kjøp
  17. S1 E17 - Section 3: Logistic Regression (First Lecture: Logistic Regression)

    2. mai 2018
    1min
    ALLE
    The method of logistic regression is introduced. Practice problems available at onlinemathtraining.
    Tilgjengelig for kjøp
  18. S1 E18 - Logistic Regression Model of the Posterior Probability Function

    2. mai 2018
    3min
    ALLE
    In this lecture, we model the posterior probability function.
    Tilgjengelig for kjøp
  19. S1 E19 - Estimating the Posterior Probability Function

    2. mai 2018
    9min
    ALLE
    In this lecture, we introduce a strategy for estimating the posterior probability function.
    Tilgjengelig for kjøp
  20. S1 E20 - The Multivariate Newton-Raphson Method

    2. mai 2018
    9min
    ALLE
    Students will learn how the Multivariate Newton-Raphson method is used to maximize a function.
    Tilgjengelig for kjøp
  21. S1 E21 - Maximizing the Log-Likelihood Function

    2. mai 2018
    14min
    ALLE
    In this lecture, we apply the multivariate Newton-Raphson method to the log-likelihood function and learn about iterative reweighted least squares.
    Tilgjengelig for kjøp
  22. S1 E22 - Example: Logistic Regression

    2. mai 2018
    10min
    ALLE
    Students will learn how to apply logistic regression to solve a classification problem.
    Tilgjengelig for kjøp
  23. S1 E23 - Summary: Logistic Regression

    2. mai 2018
    1min
    ALLE
    A summary of logistic regression is provided.
    Tilgjengelig for kjøp
  24. S1 E24 - Section 4: Artificial Neural Networks (First Lecture: Artificial Neural Networks)

    2. mai 2018
    36sek
    ALLE
    An introduction to artificial neural networks is provided. Practice problems available at onlinemathtraining.
    Tilgjengelig for kjøp
  25. S1 E25 - Neural Network Model of the Output Functions

    2. mai 2018
    13min
    ALLE
    In this lecture, we build a neural network model for the output functions using a neural network diagram.
    Tilgjengelig for kjøp